- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Основные характеристики случайных величин. Меры положения. Таковыми называют (считают) точки, вокруг которых происходит колебание характеристики величин. Сумма произведений эмпирических значений случайной величены хi на соответствующие частности называется выборочным средним
Математическое ожидание обозначается как
Где р(х) – функция, которая определяет вероятности р(х) для всех хi случайной величины. При непрерывности случайной величины.
Где f(х) – плотность вероятности, F(х) – функция распределения случайной величины.
Кроме вышеприведенных оперируют следующими мерами положения:
Но эти меры используются не очень часто. Меры рассеяния. Если меры положения характеризовали точки, вокруг которых происходило колебание значений случайных величин, то меры рассеяния характеризуют группировку самих значений колеблющейся величины х или хi. Подхарактеристика мер рассеяния: 1. Выборочное среднее абсолютное отклонение.
– абсолютное отклонение наблюденного значения хi случайной величины от выборочного среднего. 2. Выборочная дисперсия S2; она характеризует рассеяние или однородность случайной величины хi